Notes on scipy.optimize.minimize

Problem: evenly distributed points on ellipsoid surfaces.
Solution: numerically minimizing energy of charges constrained on the ellipsoid surface.
Assuming the ellipsoid satisfies equation:
$$\left(\frac{x}{a}\right)^2+\left(\frac{y}{b}\right)^2+\left(\frac{z}{c}\right)^2=1$$
the ratios of 3 axes of the ellipsoid surface are $(a,b,c)^T$. The minimization process is:
1. let
$$\mathbf{x}^\prime:=\frac{1}{\sqrt{\left(\frac{x}{a}\right)^2+\left(\frac{y}{b}\right)^2+\left(\frac{z}{c}\right)^2}}(x, y, z)^T$$
then $\mathbf{x}^\prime$ satisfy the ellipsoid equation;
2. minimize the energy function
$$u=\sum_i \sum_{j>i} \frac{1}{\sqrt{(x^\prime_i-x^\prime_j)^2+(y^\prime_i-y^\prime_j)^2+(z^\prime_i-z^\prime_j)^2}}$$
3. the gradient vector is, e.g. the $x$ component of ith particle:
$$\partial u/\partial x_i=\sum_{j\ne i} - ((x^{\prime 2}_i/a^2-1)(x^\prime_j-x^\prime_i) +$$ $$(x^{\prime}_i y^{\prime}_i(y^{\prime}_j-y^{\prime}_i)+x^{\prime}_i z^{\prime}_i (z^{\prime}_j-z^{\prime}_i))/a^2)/d^3$$ with $d=\sqrt{(x^{\prime}_i -x^{\prime}_j)^2+(y^{\prime}_i -y^{\prime}_j)^2+(z^{\prime}_i -z^{\prime}_j)^2}$
***NOTE THE GRADIENT IS CALCULATED WITH RESPECT TO $\mathbf{x}$, $\nabla_\mathbf{x}U$, NOT $\mathbf{x}^\prime$, $\nabla_{\mathbf{x}^\prime}U$***
The scipy.optimize.minimize function takes jac=True parameter if the function provides gradient vector, this would boost up the program dramatically.

Back2Top ^